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1. Generators and strong generators

Definition 1.1. T ∈ C is called a classical generator if the smallest thick1 triangulated
subcategory which contains T is C. T is called a strong generated if there exist an integer
n such that any object C ∈ C can be obtain starting with T using direct sums, direct
summands and at most n cones.

Example 1.2. If C has a full exceptional collection E1, . . . , Er, then E1 ⊕ · · · ⊕ Er is a
strong generator.

Theorem 1.3. 1. If OX(1) is a very ample line bundle on X, then
⊕n

j=0O(−j),
n = dim(X) is a generator of Db(X).

2. Any classical generator of Db(X) is strong.
3. If C admits a strong (resp. classical) generator, then any left or right admissible

subcategory A ⊂ C also admits a strong (resp. classical) generator.

Proof. (1) Let i : X → PN be a projective embedding satisfying OX(1) ' i∗OPN (1).
Let C ⊂ Db(X) be the smallest thick triangulated subcategory containing OX(k), k =
−n, . . . , 0.

We first prove that C contains all OX(k), k ≤ 0. Let E = OPN (−1)N+1 and s ∈
Γ(PN , E∨) be a nonvanishing section. Since Z(s) = 0, the Koszul compex corresponding
to s gives rise to exact sequence of sheaves

0→ ΛN+1E → · · · → Λ2E → E → OPN → 0.

1Thick means triangulated and closed under taking direct summands.
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We restrict this sequence to X and consider the truncation

V• = [Λn+1E
∣∣
X
→ · · · → Λ2E

∣∣
X
→ E

∣∣
X

] =

= [Λn+1kN+1 ⊗OX(−n− 1)→ · · · → Λ2kN+1 ⊗OX(−2)→ kN+1 ⊗OX(−1)].

Let H = Ker(Λn+1E → ΛnE). H[n] is a subcomplex in V• and the quotient is quasi-
isomorphic to OX , thus we have a distinguished triangle:

H[n]→ V• → OX → H[n+ 1].

Since n = dim(X), we have Hn+1(X,H) = 0, thus the third morphism in the distin-
guished triangle is zero, and it splits, from which we see, that OX is a direct summand
in V•. Therefore, OX(1) is a direct summand in V• ⊗OX(1) ∈ C, thus OX(1) ∈ C and
by induction we obtain that OX(k) ∈ C for all k ≥ −n.

Similarly, using the truncation

[ΛNkN+1 ⊗OX(−N)→ · · · → ΛN−d+1kN+1 ⊗OX(−N + d− 1)]

and its twists one shows that OX(k) ∈ C for all k < −n as well.
Finally will prove that C contains all coherent sheaves, thus C = Db(X) and L⊗−n ⊕

· · · ⊕ L⊗−1 ⊕O is a generator.
Any coherent sheaf F on X ⊂ PN admits an infinite resolution by direct sums of the

object O(k). Truncating this complex as above shows that F lies is C.
(2.) One first proves that if T is a classical generator of Db(X), then T � T is a

classical generator of Db(X ×X). Now O∆X
∈ Db(X ×X) is generated by T � T using

a finite number N of cones, thus the same holds true for IdX = FMO∆X
in terms of

FMT�T = T ⊗RΓ(T ⊗ •). Therefore, any F is generated by T using N cones.
(3.) If A ⊂ C be right admissible and if T is a strong (resp. classical) generator of C,

then i!(T ) is a strong (resp. classical) generator of A.
�

Remark 1.4. One of the important consequences of having a strong generator is that
by a theorem of Keller if T is a generator for Db(X), then one has

Db(X) ∼= Db
perf (mod−A),

where on the right we have the derived category of perfect dg-modules over dg-algebra
A = RHom(T, T ). The equivalence sends a complex F• to the rightA-moduleRHom(T,F•).
We can think of this equivalence as a derived equivalence betweenX and a non-commutative
derived affine variety corresponding to A.

Example 1.5. Let T = O ⊕O(1) be the generator of P1 = P(V ). Let x1, x2 be a basis
of H0(P1,O(1)). Then

A = RHom(T, T ) ∼= k · e0 ⊕ k · x1 ⊕ k · x2 ⊕ k · e1,

with all mutliplications vanishing except for

e2
0 = e0; e2

1 = e1; e1xie0 = xi, i = 1, 2.

Let U be an A-module. Let U0 = Im(e0), U1 = Im(e1). We have U = U0 ⊕ U1 and
x1, x2 give rise to morphisms U0 → U1. Such data is by definition the same thing as a
representation of a quiver S2 : •⇒ •.
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More generally any exceptional collection without higher Ext’s in Db(X) gives rise to
an equivalence between Db(X) and the derived category of representations of a quiver
with relations.

2. Saturatedness

Definition 2.1. A contravariant (resp. covariant) functor H : C → V ect/k is called a
cohomological functor if for any triangle

X → Y → Z → X[1]

we have a long exact sequence

· · · → H(X[1])→ H(Z)→ H(Y )→ H(X)→ H(Z[−1])→ . . . .

(resp.

· · · → H(Z[−1])→ H(X)→ H(Y )→ H(Z)→ H(X[1])→ . . . ).

H is called of finite type if
⊕

k∈ZH(X[k]) are finite-dimensional vector spaces for all
X ∈ C.

Definition 2.2. A triangualted category C of finite type is called right (resp. left)
saturated if any contravariant (resp. covariant) cohomological functor of finite type

F : C → Db(V ect/k)

is representable. C is called saturated if it is left and right saturated.

Proposition 2.3. 1. If A is right (resp. left) saturated, for any triangulated category
of finite type C any fully faithful embedding A ⊂ C, A is right (resp. left) admissible.

2. If A is saturated, then A admits a Serre functor.
3. If C is saturated and A ⊂ C is left (or right) admissble, then A is saturated.
4. If C = 〈A,B〉 is a semi-orthogonal decomposition and A and B are saturated, then

C is saturated.

Proof. (1.) We prove that if A is right saturated, then i : A → C admits a right adjoint,
thus A will be right admissible. For any C ∈ C consider a functor

FC(A) = HomC(i(A), C).

This functor being a contravariant cohomological functor of finite type is representable
by some object which we denote i!(C):

FC(A) = HomA(A, i!(C)).

Any choice {i!(C)}C∈C will be functorial in C and by construction the functor i! is right
adjoint to i.

(2.) We have shown last time that C admits a Serre functor if the functors Hom(C, •)∗
and Hom(•, C)∗ are representable for all C ∈ C. Since both these kinds of functors are
cohomological of finite type, it follows from saturatedness that they are representable.

(3.) We first prove that if C is right saturated and A is right admissible, then A is
right saturated. Let H : A → V ect be a contravariant cohomological functor of finite
type. Consider a functor

H ′ = H ◦ i! : C → V ect.
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There is an object C ∈ C such that

H ′ ∼= Hom(•, C).

Now

H ∼= H ′ ◦ i ∼= Hom(i(•), C) ∼= Hom(•, i!(C)),

thus i!(C) ∈ A represents H.
We now prove that if C is right saturated and A is left admissible, then A is right

saturated. Let again H : A → V ect be a contravariant cohomological functor of finite
type. Consider a functor

H ′ = H ◦ i∗ : C → V ect.

There is an object C ∈ C such that

H ′ ∼= Hom(•, C).

We claim that C ∈ A. Indeed for any B ∈ ⊥A

Hom(B,C) ∼= H ′(B) = H(i∗B) = 0,

thus B ∈ A. Since the representing object C lies in A it also represents the restriction
H ' H ′

∣∣
A.

(4.) We omit the proof. See [BK]. �

Theorem 2.4. If C admits a strong generator, then C is saturated.

This is the one of the main results of [BvdB]. The proof of this theorem is complicated
and we omit it.

3. Semi-orthogonal decomposition of fibre bundles

Theorem 3.1. Let E be a vector bundle of rank n + 1 over X. Let p : P(E) → X be
the corresponding projective bundle and let O(1) be the canonical line bundle on P(E).
Then p∗ : Db(X)→ Db(P(E)) is a fully faithful embedding and there is a semi-orthogonal
decomposition

Db(P(E)) =
〈
p∗Db(X), p∗Db(X)⊗O(1) . . . , p∗Db(X)⊗O(n)

〉
.

In particular if X admits a full exceptional collection, then P(E) admits a full exceptional
collection.

This theorem of Orlov is a particular case of a more general theorem proved later by
Samokhin:

Theorem 3.2. Let p : Y → X be a flat morphism of smooth projective varieties. Assume
that there exist a sequence of vector bundles F1, . . . ,Fr on X such that the restrictions
F1,x, . . . ,Fr,x of this sequence to each fiber Yx, x ∈ X give a full exceptional collection.

Then Φi : Db(X)→ Db(Y ), Φi(A) := p∗(A)⊗Fi is a fully faithful embedding and there
is a semi-orthogonal decomposition

Db(Y ) =
〈
p∗Db(X)⊗F1, p

∗Db(X)⊗F2 . . . , p
∗Db(X)⊗Fr

〉
.
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Proof. The proof goes in following steps.
Step 1. Φi is a fully faithful embedding for each i = 1, . . . , r. We compute

Hom(p∗(A)⊗Fi, p∗(B)⊗Fi) ∼= Hom(p∗(A), p∗(B)⊗Hom(Fi,Fi))
∼= Hom(A,B ⊗ p∗Hom(Fi,Fi)).

We now that prove that p∗Hom(Fi,Fi) ' OX (recall that our p∗ is the derived functor).
This follows from the base change and the fact that the restrictions of Fi to all fibers
are exceptional.

Step 2. Hom(p∗A⊗Fj , p∗B⊗Fi) = 0 for j > i, that is the sequence of subcategories

p∗Db(X)⊗F1, . . . , p
∗Db(X)⊗Fr is semi-orthogonal. This is step is very similar to step

1.
Step 3. The subcategory A =

〈
p∗Db(X)⊗F1, . . . , p

∗Db(X)⊗Fr
〉
⊂ Db(X) is admis-

sible. Indeed A is saturated, hence admissible.
Step 4. A contains all k(y), y ∈ Y , hence the orthogonals to A vanish and A coincides

with Db(X).
For more details see [S].

�

Corollary 3.3. Let X, Y be smooth projective varieties admitting full exceptional collec-
tions E1, . . . , Er and F1, . . . , Fl respectively. Then Ei�Fj is a full exceptional collection
on X × Y (we allow any ordering of {Ei � Fj} which is compatible with the ordering of
{Ei} and the ordering of {Fj}).

Example 3.4. {O(i, j) := O(i)⊗O(j), 0 ≤ i, j ≤ n} is a full exceptional collection on
Pn × Pn.

4. Semi-orthogonal decomposition of blow ups

Theorem 4.1. Let X̃ be a blow up of a smooth projective variety X along a smooth

subvariety Y ⊂ X. Let Ỹ be the exceptional divisor:

Ỹ

p

��

j
// X̃

π

��
Y // X

Recall that p : Ỹ → Y is a projective bundle and let O(1) be the corresponding canonical

line bundle on Ỹ . Then
1. π∗ : Db(X)→ Db(X̃) is a fully faithful embedding.

2. j∗ : Db(Ỹ ) → Db(X̃) restricted to each p∗Db(Y ) ⊗ O(k), k ∈ Z is a fully faithful
embedding.

3. There is a semi-orthogonal decomposition

Db(X̃) =
〈
Db(Y )c−1, . . . , D

b(Y )1, D
b(X)0

〉
.

Here Db(X)0 = π∗Db(X), Db(Y )k = j∗p
∗Db(Y )⊗O(−k) and c = codim(Y/X).

In particular, if X and Y admit full exceptional collections, then X̃ also has one.

In order to prove semi-orthogonality we will use the following Lemma.
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Lemma 4.2. Let j : D → X be an embedding of a smooth divisor. Then for any object
F ∈ Db(D) there is a following triangle in Db(D):

F ⊗O(−D)→ F → j∗j∗F → F ⊗O(−D)[1].

Proof of the Theorem. (1) follows from the fact that π∗OX̃ = OX and adjunction be-
tween π∗, π∗.

We will now check (2) and semi-orthogonality in (3). We use adjunctions and the

Lemma with O(−D) = O(−Ỹ ) = O(1):

Hom(j∗(p
∗F1 ⊗O(k)), j∗(p

∗F2 ⊗O(k))) = Hom(j∗j∗(p
∗F1 ⊗O(k)), p∗F2 ⊗O(k)) =

= Hom(p∗F1 ⊗O(k), p∗F2 ⊗O(k)) =

= Hom(F1,F2).

Similarly, if k > i, then

Hom(j∗(p
∗F1 ⊗O(k)), j∗(p

∗F2 ⊗O(i))) = Hom(j∗j∗(p
∗F1 ⊗O(k)), p∗F2 ⊗O(i)) =

= Hom(p∗F1 ⊗O(k), p∗F2 ⊗O(i)) = 0.

Finally, we have

Hom(π∗G, j∗(p∗F ⊗O(k))) = Hom(G, π∗j∗(p∗F ⊗O(k))) =

= Hom(G, i∗p∗(p∗F ⊗O(k))) =

= Hom(G, i∗(F ⊗ p∗(O(k))) = 0

since p∗(O(k)) = 0 for k = −1, . . . ,−c+ 1.
We omit the proof of fullness. �
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