DERIVED CATEGORIES: LECTURE 3

EVGENY SHINDER

References

- [BvdB] A.Bondal, M. van den Bergh Generators and Representability of Functors in Commutative and Noncommutative Geomery, Moscow Math. J., Vol. 3 (1), Jan.-Mar. 2003, 1–36
- [BK] Alexey Bondal, Mikhail Kapranov, Representable functors, Serre functors, and mutations, Izv. Akad. Nauk SSSR Ser. Mat., 53:6 (1989),
- [Or1] D.O.Orlov, Projective bundles, monoidal transformations and derived categories of coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 56 (1992), 852–862; English transl. in Math USSR Izv. 38 (1993), 133–141
- [Or2] D.O.Orlov, Remarks on generators and dimensions of triangulated categories, Mosc. Math. J. 9 (2009), no. 1, 153–159,
- [S] A.Samokhin, Some remarks on the derived categories of coherent sheaves on homogeneous spaces, J. Lond. Math. Soc. (2) 76 (2007), no. 1, 122–134.

1. Generators and strong generators

Definition 1.1. $T \in \mathcal{C}$ is called a classical generator if the smallest thick¹ triangulated subcategory which contains T is \mathcal{C} . T is called a strong generated if there exist an integer n such that any object $C \in \mathcal{C}$ can be obtain starting with T using direct sums, direct summands and at most n cones.

Example 1.2. If C has a full exceptional collection E_1, \ldots, E_r , then $E_1 \oplus \cdots \oplus E_r$ is a strong generator.

Theorem 1.3. 1. If $\mathcal{O}_X(1)$ is a very ample line bundle on X, then $\bigoplus_{j=0}^n \mathcal{O}(-j)$, $n = \dim(X)$ is a generator of $D^b(X)$.

2. Any classical generator of $D^b(X)$ is strong.

3. If C admits a strong (resp. classical) generator, then any left or right admissible subcategory $A \subset C$ also admits a strong (resp. classical) generator.

Proof. (1) Let $i : X \to \mathbb{P}^N$ be a projective embedding satisfying $\mathcal{O}_X(1) \simeq i^* \mathcal{O}_{\mathbb{P}^N}(1)$. Let $\mathcal{C} \subset D^b(X)$ be the smallest thick triangulated subcategory containing $\mathcal{O}_X(k), k = -n, \ldots, 0$.

We first prove that \mathcal{C} contains all $\mathcal{O}_X(k)$, $k \leq 0$. Let $\mathcal{E} = \mathcal{O}_{\mathbb{P}^N}(-1)^{N+1}$ and $s \in \Gamma(\mathbb{P}^N, \mathcal{E}^{\vee})$ be a nonvanishing section. Since Z(s) = 0, the Koszul compex corresponding to s gives rise to exact sequence of sheaves

$$0 \to \Lambda^{N+1} \mathcal{E} \to \cdots \to \Lambda^2 \mathcal{E} \to \mathcal{E} \to \mathcal{O}_{\mathbb{P}^N} \to 0.$$

¹Thick means triangulated and closed under taking direct summands.

We restrict this sequence to X and consider the truncation

$$\mathcal{V}^{\bullet} = \left[\Lambda^{n+1}\mathcal{E}\big|_{X} \to \dots \to \Lambda^{2}\mathcal{E}\big|_{X} \to \mathcal{E}\big|_{X}\right] = \\ = \left[\Lambda^{n+1}k^{N+1} \otimes \mathcal{O}_{X}(-n-1) \to \dots \to \Lambda^{2}k^{N+1} \otimes \mathcal{O}_{X}(-2) \to k^{N+1} \otimes \mathcal{O}_{X}(-1)\right].$$

Let $\mathcal{H} = Ker(\Lambda^{n+1}\mathcal{E} \to \Lambda^n \mathcal{E})$. $\mathcal{H}[n]$ is a subcomplex in \mathcal{V}^{\bullet} and the quotient is quasiisomorphic to \mathcal{O}_X , thus we have a distinguished triangle:

$$\mathcal{H}[n] \to \mathcal{V}^{\bullet} \to \mathcal{O}_X \to \mathcal{H}[n+1].$$

Since n = dim(X), we have $H^{n+1}(X, \mathcal{H}) = 0$, thus the third morphism in the distinguished triangle is zero, and it splits, from which we see, that \mathcal{O}_X is a direct summand in \mathcal{V}^{\bullet} . Therefore, $\mathcal{O}_X(1)$ is a direct summand in $\mathcal{V}^{\bullet} \otimes \mathcal{O}_X(1) \in \mathcal{C}$, thus $\mathcal{O}_X(1) \in \mathcal{C}$ and by induction we obtain that $\mathcal{O}_X(k) \in \mathcal{C}$ for all $k \geq -n$.

Similarly, using the truncation

$$[\Lambda^N k^{N+1} \otimes \mathcal{O}_X(-N) \to \cdots \to \Lambda^{N-d+1} k^{N+1} \otimes \mathcal{O}_X(-N+d-1)]$$

and its twists one shows that $\mathcal{O}_X(k) \in \mathcal{C}$ for all k < -n as well.

Finally will prove that \mathcal{C} contains all coherent sheaves, thus $\mathcal{C} = D^b(X)$ and $L^{\otimes -n} \oplus \cdots \oplus L^{\otimes -1} \oplus \mathcal{O}$ is a generator.

Any coherent sheaf \mathcal{F} on $X \subset \mathbb{P}^N$ admits an infinite resolution by direct sums of the object $\mathcal{O}(k)$. Truncating this complex as above shows that \mathcal{F} lies is \mathcal{C} .

(2.) One first proves that if T is a classical generator of $D^b(X)$, then $T \boxtimes T$ is a classical generator of $D^b(X \times X)$. Now $\mathcal{O}_{\Delta_X} \in D^b(X \times X)$ is generated by $T \boxtimes T$ using a finite number N of cones, thus the same holds true for $Id_X = FM_{\mathcal{O}_{\Delta_X}}$ in terms of $FM_{T\boxtimes T} = T \otimes R\Gamma(T \otimes \bullet)$. Therefore, any \mathcal{F} is generated by T using N cones.

(3.) If $\mathcal{A} \subset \mathcal{C}$ be right admissible and if T is a strong (resp. classical) generator of \mathcal{C} , then $i^{!}(T)$ is a strong (resp. classical) generator of \mathcal{A} .

Remark 1.4. One of the important consequences of having a strong generator is that by a theorem of Keller if T is a generator for $D^b(X)$, then one has

$$D^b(X) \cong D^b_{nerf}(mod - A),$$

where on the right we have the derived category of perfect dg-modules over dg-algebra A = RHom(T, T). The equivalence sends a complex \mathcal{F}^{\bullet} to the right A-module $RHom(T, \mathcal{F}^{\bullet})$. We can think of this equivalence as a derived equivalence between X and a non-commutative derived affine variety corresponding to A.

Example 1.5. Let $T = \mathcal{O} \oplus \mathcal{O}(1)$ be the generator of $\mathbb{P}^1 = \mathbb{P}(V)$. Let x_1, x_2 be a basis of $H^0(\mathbb{P}^1, \mathcal{O}(1))$. Then

$$A = RHom(T, T) \cong k \cdot e_0 \oplus k \cdot x_1 \oplus k \cdot x_2 \oplus k \cdot e_1,$$

with all mutliplications vanishing except for

$$e_0^2 = e_0; e_1^2 = e_1; e_1 x_i e_0 = x_i, i = 1, 2.$$

Let U be an A-module. Let $U_0 = Im(e_0)$, $U_1 = Im(e_1)$. We have $U = U_0 \oplus U_1$ and x_1, x_2 give rise to morphisms $U_0 \to U_1$. Such data is by definition the same thing as a representation of a quiver $S_2 : \bullet \rightrightarrows \bullet$.

More generally any exceptional collection without higher Ext's in $D^b(X)$ gives rise to an equivalence between $D^b(X)$ and the derived category of representations of a quiver with relations.

2. Saturatedness

Definition 2.1. A contravariant (resp. covariant) functor $H : \mathcal{C} \to Vect/k$ is called a cohomological functor if for any triangle

$$X \to Y \to Z \to X[1]$$

we have a long exact sequence

$$\cdots \to H(X[1]) \to H(Z) \to H(Y) \to H(X) \to H(Z[-1]) \to \dots$$

(resp.

$$\cdots \to H(Z[-1]) \to H(X) \to H(Y) \to H(Z) \to H(X[1]) \to \dots)$$

H is called of finite type if $\bigoplus_{k \in \mathbb{Z}} H(X[k])$ are finite-dimensional vector spaces for all $X \in \mathcal{C}$.

Definition 2.2. A triangualted category C of finite type is called right (resp. left) saturated if any contravariant (resp. covariant) cohomological functor of finite type

$$F: \mathcal{C} \to D^b(Vect/k)$$

is representable. C is called saturated if it is left and right saturated.

Proposition 2.3. 1. If \mathcal{A} is right (resp. left) saturated, for any triangulated category of finite type \mathcal{C} any fully faithful embedding $\mathcal{A} \subset \mathcal{C}$, \mathcal{A} is right (resp. left) admissible.

2. If \mathcal{A} is saturated, then \mathcal{A} admits a Serre functor.

3. If C is saturated and $A \subset C$ is left (or right) admissble, then A is saturated.

4. If $C = \langle A, B \rangle$ is a semi-orthogonal decomposition and A and B are saturated, then C is saturated.

Proof. (1.) We prove that if \mathcal{A} is right saturated, then $i : \mathcal{A} \to \mathcal{C}$ admits a right adjoint, thus \mathcal{A} will be right admissible. For any $C \in \mathcal{C}$ consider a functor

$$F_C(A) = Hom_{\mathcal{C}}(i(A), C).$$

This functor being a contravariant cohomological functor of finite type is representable by some object which we denote $i^!(C)$:

$$F_C(A) = Hom_{\mathcal{A}}(A, i^!(C)).$$

Any choice $\{i^{!}(C)\}_{C \in \mathcal{C}}$ will be functorial in \mathcal{C} and by construction the functor $i^{!}$ is right adjoint to i.

(2.) We have shown last time that C admits a Serre functor if the functors $Hom(C, \bullet)^*$ and $Hom(\bullet, C)^*$ are representable for all $C \in C$. Since both these kinds of functors are cohomological of finite type, it follows from saturatedness that they are representable.

(3.) We first prove that if C is right saturated and A is right admissible, then A is right saturated. Let $H : A \to Vect$ be a contravariant cohomological functor of finite type. Consider a functor

$$H' = H \circ i^! : \mathcal{C} \to Vect.$$

There is an object $C \in \mathcal{C}$ such that

$$H' \cong Hom(\bullet, C).$$

Now

$$H \cong H' \circ i \cong Hom(i(\bullet), C) \cong Hom(\bullet, i^!(C)),$$

thus $i^!(C) \in \mathcal{A}$ represents H.

We now prove that if C is right saturated and A is left admissible, then A is right saturated. Let again $H : A \to Vect$ be a contravariant cohomological functor of finite type. Consider a functor

$$H' = H \circ i^* : \mathcal{C} \to Vect.$$

There is an object $C \in \mathcal{C}$ such that

$$H' \cong Hom(\bullet, C).$$

We claim that $C \in \mathcal{A}$. Indeed for any $B \in {}^{\perp}\mathcal{A}$

$$Hom(B,C) \cong H'(B) = H(i^*B) = 0,$$

thus $B \in \mathcal{A}$. Since the representing object C lies in \mathcal{A} it also represents the restriction $H \simeq H'|_{\mathcal{A}}$.

(4.) We omit the proof. See [BK].

Theorem 2.4. If C admits a strong generator, then C is saturated.

This is the one of the main results of [BvdB]. The proof of this theorem is complicated and we omit it.

3. Semi-orthogonal decomposition of fibre bundles

Theorem 3.1. Let E be a vector bundle of rank n + 1 over X. Let $p : \mathbb{P}(E) \to X$ be the corresponding projective bundle and let $\mathcal{O}(1)$ be the canonical line bundle on $\mathbb{P}(E)$. Then $p^* : D^b(X) \to D^b(\mathbb{P}(E))$ is a fully faithful embedding and there is a semi-orthogonal decomposition

$$D^{b}(\mathbb{P}(E)) = \left\langle p^{*}D^{b}(X), p^{*}D^{b}(X) \otimes \mathcal{O}(1) \dots, p^{*}D^{b}(X) \otimes \mathcal{O}(n) \right\rangle.$$

In particular if X admits a full exceptional collection, then $\mathbb{P}(E)$ admits a full exceptional collection.

This theorem of Orlov is a particular case of a more general theorem proved later by Samokhin:

Theorem 3.2. Let $p: Y \to X$ be a flat morphism of smooth projective varieties. Assume that there exist a sequence of vector bundles $\mathcal{F}_1, \ldots, \mathcal{F}_r$ on \mathcal{X} such that the restrictions $\mathcal{F}_{1,x}, \ldots, \mathcal{F}_{r,x}$ of this sequence to each fiber $Y_x, x \in X$ give a full exceptional collection. Then $\Phi_i: D^b(X) \to D^b(Y), \Phi_i(A) := p^*(A) \otimes \mathcal{F}_i$ is a fully faithful embedding and there is a semi-orthogonal decomposition

$$D^{b}(Y) = \left\langle p^{*}D^{b}(X) \otimes \mathcal{F}_{1}, p^{*}D^{b}(X) \otimes \mathcal{F}_{2} \dots, p^{*}D^{b}(X) \otimes \mathcal{F}_{r} \right\rangle.$$

Proof. The proof goes in following steps.

Step 1. Φ_i is a fully faithful embedding for each i = 1, ..., r. We compute $Hom(p^*(A) \otimes \mathcal{F}_i, p^*(B) \otimes \mathcal{F}_i) \cong Hom(p^*(A), p^*(B) \otimes \underline{Hom}(\mathcal{F}_i, \mathcal{F}_i))$ $\cong Hom(A, B \otimes p_*\underline{Hom}(\mathcal{F}_i, \mathcal{F}_i)).$

We now that prove that $p_*\underline{Hom}(\mathcal{F}_i, \mathcal{F}_i) \simeq \mathcal{O}_X$ (recall that our p_* is the derived functor). This follows from the base change and the fact that the restrictions of \mathcal{F}_i to all fibers are exceptional.

Step 2. $Hom(p^*A \otimes \mathcal{F}_j, p^*B \otimes \mathcal{F}_i) = 0$ for j > i, that is the sequence of subcategories $p^*D^b(X) \otimes \mathcal{F}_1, \ldots, p^*D^b(X) \otimes \mathcal{F}_r$ is semi-orthogonal. This is step is very similar to step 1.

Step 3. The subcategory $\mathcal{A} = \langle p^* D^b(X) \otimes \mathcal{F}_1, \dots, p^* D^b(X) \otimes \mathcal{F}_r \rangle \subset D^b(X)$ is admissible. Indeed \mathcal{A} is saturated, hence admissible.

Step 4. \mathcal{A} contains all $k(y), y \in Y$, hence the orthogonals to \mathcal{A} vanish and \mathcal{A} coincides with $D^b(X)$.

For more details see [S].

Corollary 3.3. Let X, Y be smooth projective varieties admitting full exceptional collections E_1, \ldots, E_r and F_1, \ldots, F_l respectively. Then $E_i \boxtimes F_j$ is a full exceptional collection on $X \times Y$ (we allow any ordering of $\{E_i \boxtimes F_j\}$ which is compatible with the ordering of $\{E_i\}$ and the ordering of $\{F_i\}$).

Example 3.4. $\{\mathcal{O}(i,j) := \mathcal{O}(i) \otimes \mathcal{O}(j), 0 \leq i, j \leq n\}$ is a full exceptional collection on $\mathbb{P}^n \times \mathbb{P}^n$.

4. Semi-orthogonal decomposition of blow ups

Theorem 4.1. Let \widetilde{X} be a blow up of a smooth projective variety X along a smooth subvariety $Y \subset X$. Let \widetilde{Y} be the exceptional divisor:

$$\begin{array}{c} \widetilde{Y} \xrightarrow{j} \widetilde{X} \\ p \\ \downarrow \\ Y \xrightarrow{j} X \end{array}$$

Recall that $p: \widetilde{Y} \to Y$ is a projective bundle and let $\mathcal{O}(1)$ be the corresponding canonical line bundle on \widetilde{Y} . Then

1. $\pi^*: D^b(X) \to D^b(\widetilde{X})$ is a fully faithful embedding.

2. $j_*: D^b(\widetilde{Y}) \to D^b(\widetilde{X})$ restricted to each $p^*D^b(Y) \otimes \mathcal{O}(k)$, $k \in \mathbb{Z}$ is a fully faithful embedding.

3. There is a semi-orthogonal decomposition

$$D^{b}(\widetilde{X}) = \left\langle D^{b}(Y)_{c-1}, \dots, D^{b}(Y)_{1}, D^{b}(X)_{0} \right\rangle.$$

Here $D^b(X)_0 = \pi^* D^b(X)$, $D^b(Y)_k = j_* p^* D^b(Y) \otimes \mathcal{O}(-k)$ and c = codim(Y/X). In particular, if X and Y admit full exceptional collections, then \widetilde{X} also has one.

In order to prove semi-orthogonality we will use the following Lemma.

Lemma 4.2. Let $j : D \to X$ be an embedding of a smooth divisor. Then for any object $\mathcal{F} \in D^b(D)$ there is a following triangle in $D^b(D)$:

$$\mathcal{F} \otimes \mathcal{O}(-D) \to \mathcal{F} \to j^* j_* \mathcal{F} \to \mathcal{F} \otimes \mathcal{O}(-D)[1].$$

Proof of the Theorem. (1) follows from the fact that $\pi_*\mathcal{O}_{\widetilde{X}} = \mathcal{O}_X$ and adjunction between π^*, π_* .

We will now check (2) and semi-orthogonality in (3). We use adjunctions and the Lemma with $\mathcal{O}(-D) = \mathcal{O}(-\tilde{Y}) = \mathcal{O}(1)$:

$$Hom(j_*(p^*\mathcal{F}_1 \otimes \mathcal{O}(k)), j_*(p^*\mathcal{F}_2 \otimes \mathcal{O}(k))) = Hom(j^*j_*(p^*\mathcal{F}_1 \otimes \mathcal{O}(k)), p^*\mathcal{F}_2 \otimes \mathcal{O}(k)) = \\ = Hom(p^*\mathcal{F}_1 \otimes \mathcal{O}(k), p^*\mathcal{F}_2 \otimes \mathcal{O}(k)) = \\ = Hom(\mathcal{F}_1, \mathcal{F}_2).$$

Similarly, if k > i, then

$$Hom(j_*(p^*\mathcal{F}_1 \otimes \mathcal{O}(k)), j_*(p^*\mathcal{F}_2 \otimes \mathcal{O}(i))) = Hom(j^*j_*(p^*\mathcal{F}_1 \otimes \mathcal{O}(k)), p^*\mathcal{F}_2 \otimes \mathcal{O}(i)) = \\ = Hom(p^*\mathcal{F}_1 \otimes \mathcal{O}(k), p^*\mathcal{F}_2 \otimes \mathcal{O}(i)) = 0.$$

Finally, we have

$$Hom(\pi^*\mathcal{G}, j_*(p^*\mathcal{F} \otimes \mathcal{O}(k))) = Hom(\mathcal{G}, \pi_*j_*(p^*\mathcal{F} \otimes \mathcal{O}(k))) =$$

= $Hom(\mathcal{G}, i_*p_*(p^*\mathcal{F} \otimes \mathcal{O}(k))) =$
= $Hom(\mathcal{G}, i_*(\mathcal{F} \otimes p_*(\mathcal{O}(k))) = 0$

since $p_*(\mathcal{O}(k)) = 0$ for k = -1, ..., -c + 1.

We omit the proof of fullness.