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1. GENERATORS AND STRONG GENERATORS

Definition 1.1. T € C is called a classical generator if the smallest thick! triangulated
subcategory which contains 7" is C. T is called a strong generated if there exist an integer
n such that any object C' € C can be obtain starting with T using direct sums, direct
summands and at most n cones.

Example 1.2. If C has a full exceptional collection F1,...,E,, then B4 & --- P E, is a
strong generator.

Theorem 1.3. 1. If Ox(1) is a very ample line bundle on X, then @7_, O(—j),
n = dim(X) is a generator of D?(X).

2. Any classical generator of D?(X) is strong.

3. If C admits a strong (resp. classical) generator, then any left or right admissible
subcategory A C C also admits a strong (resp. classical) generator.

Proof. (1) Let i : X — P¥ be a projective embedding satisfying Ox (1) ~ i*Opn(1).
Let C € D®(X) be the smallest thick triangulated subcategory containing Ox (k),k =
—n,...,0.

We first prove that C contains all Ox(k), k < 0. Let £ = Opn(—=1)N¥*! and s €
[(PY,£Y) be a nonvanishing section. Since Z(s) = 0, the Koszul compex corresponding
to s gives rise to exact sequence of sheaves

0= ANTIE 50 S AZE - € = Opy — 0.

1Thick means triangulated and closed under taking direct summands.
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We restrict this sequence to X and consider the truncation
V=AM = o A = El ] =
=AM @ Ox(—n—1) = - = AN @ Ox(=2) = VL @ Ox(-1)].

Let H = Ker(A"t1€ — A™E). H[n] is a subcomplex in V* and the quotient is quasi-
isomorphic to Ox, thus we have a distinguished triangle:

H[n] - V* — Ox — H[n + 1].

Since n = dim(X), we have H"*1(X,#H) = 0, thus the third morphism in the distin-
guished triangle is zero, and it splits, from which we see, that Ox is a direct summand
in V°*. Therefore, Ox (1) is a direct summand in V* ® Ox (1) € C, thus Ox(1) € C and
by induction we obtain that Ox (k) € C for all kK > —n.

Similarly, using the truncation

[ANkNJrl ®OX(_N) SO AN*d+1kN+1 ®Ox(—N+d— 1)]

and its twists one shows that Ox (k) € C for all k£ < —n as well.

Finally will prove that C contains all coherent sheaves, thus C = D’(X) and L® ™" @
@ L1 © O is a generator.

Any coherent sheaf F on X C PV admits an infinite resolution by direct sums of the
object O(k). Truncating this complex as above shows that F lies is C.

(2.) One first proves that if T' is a classical generator of D(X), then TX T is a
classical generator of D’(X x X). Now Oa, € D’(X x X) is generated by T'® T using
a finite number N of cones, thus the same holds true for Idx = FM@AX in terms of
FMrgr =T ® RI'(T ® o). Therefore, any F is generated by T" using N cones.

(3.) If A C C be right admissible and if 7" is a strong (resp. classical) generator of C,
then i'(T) is a strong (resp. classical) generator of A.

O

Remark 1.4. One of the important consequences of having a strong generator is that
by a theorem of Keller if T' is a generator for D?(X), then one has

Db(X) = Dze'rf(mOd_ A)v

where on the right we have the derived category of perfect dg-modules over dg-algebra

A = RHom(T,T). The equivalence sends a complex F* to the right A-module RHom(T, F*).
We can think of this equivalence as a derived equivalence between X and a non-commutative
derived affine variety corresponding to A.

Example 1.5. Let T = O @ O(1) be the generator of P! = P(V). Let 21,72 be a basis
of HO(P*,O(1)). Then
A=RHom(T,T)=k-eg@ k-1 Dk 22D k- ey,
with all mutliplications vanishing except for
6(2] = eo; e% =e1; e1x;eg = x4, t = 1, 2.

Let U be an A-module. Let Uy = Im(ep), Uy = Im(e1). We have U = Uy & U; and
x1, T2 give rise to morphisms Uy — U;. Such data is by definition the same thing as a

representation of a quiver Sy : @ =3 e.
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More generally any exceptional collection without higher Ext’s in D?(X) gives rise to
an equivalence between Db(X ) and the derived category of representations of a quiver
with relations.

2. SATURATEDNESS

Definition 2.1. A contravariant (resp. covariant) functor H : C — Vect/k is called a
cohomological functor if for any triangle

X =Y —>7— X[1]
we have a long exact sequence
o> HX[1) = HZ) - H(Y)—> H(X)— H(Z[-1]) — ....
(resp.
o> H(Z[-1]) > HX) > HY)—> H(Z) - HX[1]) — ...).

H is called of finite type if @, ., H(X[k]) are finite-dimensional vector spaces for all
X ecC.

Definition 2.2. A triangualted category C of finite type is called right (resp. left)
saturated if any contravariant (resp. covariant) cohomological functor of finite type

F:C— D(Vect/k)
is representable. C is called saturated if it is left and right saturated.

Proposition 2.3. 1. If A is right (resp. left) saturated, for any triangulated category
of finite type C any fully faithful embedding A C C, A is right (resp. left) admissible.

2. If A is saturated, then A admits a Serre functor.

3. If C is saturated and A C C is left (or right) admissble, then A is saturated.

4. If C = (A, B) is a semi-orthogonal decomposition and A and B are saturated, then
C is saturated.

Proof. (1.) We prove that if A is right saturated, then i : A — C admits a right adjoint,
thus A will be right admissible. For any C' € C consider a functor

Fco(A) = Home(i(A),C).

This functor being a contravariant cohomological functor of finite type is representable
by some object which we denote i'(C):

Fo(A) = Homa(A,i'(0)).

Any choice {i'(C)}cec will be functorial in C and by construction the functor 7' is right
adjoint to 1.

(2.) We have shown last time that C admits a Serre functor if the functors Hom/(C, )*
and Hom(e,C)* are representable for all C' € C. Since both these kinds of functors are
cohomological of finite type, it follows from saturatedness that they are representable.

(3.) We first prove that if C is right saturated and A is right admissible, then A is
right saturated. Let H : A — Vect be a contravariant cohomological functor of finite
type. Consider a functor

H' =Hoi' :C— Vect.
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There is an object C € C such that
H' = Hom(e,C).
Now
H = H' o0i2 Hom(i(e),C) = Hom(e,i'(C)),

thus i'(C) € A represents H.

We now prove that if C is right saturated and A is left admissible, then A is right
saturated. Let again H : A — Vect be a contravariant cohomological functor of finite
type. Consider a functor

H =Hoi*:C— Vect.
There is an object C' € C such that
H' = Hom(e,C).
We claim that C' € A. Indeed for any B € + A
Hom(B,C) = H'(B) = H(i*B) =0,

thus B € A. Since the representing object C' lies in A it also represents the restriction
H~H',.
(4.) We omit the proof. See [BK]. O

Theorem 2.4. If C admits a strong generator, then C is saturated.

This is the one of the main results of [BvdB]. The proof of this theorem is complicated
and we omit it.

3. SEMI-ORTHOGONAL DECOMPOSITION OF FIBRE BUNDLES

Theorem 3.1. Let E be a vector bundle of rank n+ 1 over X. Let p : P(E) — X be
the corresponding projective bundle and let O(1) be the canonical line bundle on P(E).
Then p* : DY(X) — DY(P(E)) is a fully faithful embedding and there is a semi-orthogonal
decomposition

DY(P(E)) = <p*Db(X),p*Db(X) ®O1)...,p"D'(X)® O(n)> .

In particular if X admits a full exceptional collection, then P(E) admits a full exceptional
collection.

This theorem of Orlov is a particular case of a more general theorem proved later by
Samokhin:

Theorem 3.2. Letp : Y — X be a flat morphism of smooth projective varieties. Assume
that there exist a sequence of vector bundles Fi,...,Fr on X such that the restrictions
Flz, -, Fraz of this sequence to each fiber Y, v € X give a full exceptional collection.
Then ®; : D*(X) — DY), ®;(A) := p*(A) ® F; is a fully faithful embedding and there

s a semi-orthogonal decomposition

DHY) = (p"D'(X) ® Fi,p"D'(X) ® Fo....p" DM(X) © F ).
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Proof. The proof goes in following steps.
Step 1. ®; is a fully faithful embedding for each i = 1,...,r. We compute
Hom(p*(A) @ F;, p*(B) @ F;) & Hom(p*(A),p"(B) @ Hom(F;, Fi))
= Hom(A, B ® p.Hom(F;, F)).

We now that prove that p.Hom(F;, F;) ~ Ox (recall that our p, is the derived functor).
This follows from the base change and the fact that the restrictions of F; to all fibers
are exceptional.

Step 2. Hom(p*A® Fj,p*B ® F;) = 0 for j > 4, that is the sequence of subcategories
p*Db(X) RF1, ... ,p*Db(X) ® F; is semi-orthogonal. This is step is very similar to step
1.

Step 3. The subcategory A = (p*D*(X) ® Fi,...,p*D?(X) ® F,) C D*(X) is admis-
sible. Indeed A is saturated, hence admissible.

Step 4. A contains all k(y),y € Y, hence the orthogonals to .4 vanish and A coincides
with D°(X).

For more details see [S].

O

Corollary 3.3. Let X, Y be smooth projective varieties admitting full exceptional collec-
tions Eq, ..., E. and FY,. .., Fy respectively. Then E; K F; is a full exceptional collection
on X XY (we allow any ordering of {E; X F;} which is compatible with the ordering of
{E;} and the ordering of {F}}).

Example 3.4. {O(i,j) := O(i) ® O(j), 0 < ,7 < n} is a full exceptional collection on
P x P
4. SEMI-ORTHOGONAL DECOMPOSITION OF BLOW UPS

Theorem 4.1. Let X be a blow up of a smooth projective variety X along a smooth
subvariety Y C X. Let Y be the exceptional divisor:

R
J
pl

lw
Y — X

Recall that p : Y 5Yisa projective bundle and let O(1) be the corresponding canonical
line bundle on Y. Then _

1. 7 : D*(X) — DY X) is a fully faithful embedding.

2. i : Db(f/) — Db()N() restricted to each p*D*(Y) ® O(k), k € Z is a fully faithful
embedding.

3. There is a semi-orthogonal decomposition

DY(X) = (DV(Y)err, o, DY(Y )1, DY(X)o)
Here D*(X)o = m*D*(X), D*(Y )y = jup*D*(Y) © O(=k) and ¢ = codim(Y/X).
In particular, if X and Y admit full exceptional collections, then X also has one.

In order to prove semi-orthogonality we will use the following Lemma.
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Lemma 4.2. Let j: D — X be an embedding of a smooth divisor. Then for any object
F € D¥(D) there is a following triangle in D°(D):
FRO(—=D) - F = j juF = F® O(—=D)[1].
Proof of the Theorem. (1) follows from the fact that 7.0y = Ox and adjunction be-
tween ¥, .
We will now check (2) and semi-orthogonality in (3). We use adjunctions and the
Lemma with O(—D) = O(-Y) = O(1):
Hom(j«(p*F1 @ O(k)), j-(p" F2 © O(k))) = Hom(j"j(p*F1 @ O(k)), p* Fa @ O(k)) =
= Hom(p*F1 @ O(k),p" F2 @ O(k)) =
= Hom(F1, F2).
Similarly, if £ > 4, then
Hom(j.(p"F1 @ O(k)), j«(p"F2 © O(i))) = Hom(j"j.(p*F1 ® O(k)),p* F2 @ O(i)) =
= Hom(p*F1 ® O(k),p* F2 @ O(i)) = 0.
Finally, we have
Hom(m*G, j«(p*F © O(k))) = Hom(G, meju(p" F @ O(k))
= Hom(G, t..p«(p*"F ® O(k))
= Hom(G, ix(F @ p«(O(k))) = 0

since p.(O(k)) =0 for k=—1,...,—c+ 1.
We omit the proof of fullness. O
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