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1. Overview

One of the approaches to non-commutative geometry is to consider the category of
sheaves Shv(X) on a given geometric object X as a primary object of study.

That is, by definition a generalized space would be a category C with some properties.
We think of C as the category of sheaves on a space. It is then natural to ask which
properties of the original geometric object X can be extracted from the category Shv(X),
and ultimately, whether X itself can be reconstructed.

Precise answer to this question depends on the model we choose. Here are some
examples.

1. Rosenberg’s spectrum of an abelian category. If A is an abelian category, one can
attach to it a locally ringed space Spec(A) in such a way that if AX = QCoh(X) on a
scheme X, then Spec(AX) ∼= X. Thus by passing to the abelian category of sheaves we
do not lose information.

2. Balmer’s tensor triangulated geometry. If K is a tensor triangulated category, then
one can associate to it a locally ringed space Spec(K) which also recovers the scheme if
K is the category of sheaves. Roughly speaking, points of Spec(K) are ⊗-ideals in K.

In particular in both cases above if the corresponding categories of sheaves on X and
Y are equivalent, then X and Y are isomorphic.

This is not the case for Db(X) (considered as usual as a triangulated category). Indeed
there are examples of K3 surfaces and abelian varieties for which derived equivalence
does not imply isomorphism.

On the other hand if KX > 0 or KX < 0, then Bondal and Orlov proved that it is
possible to reconstruct X from Db(X).
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2. Abelian varieties and K3 surfaces

Sometimes a moduli space Y of sheaves or bundles with prescribed properties on a
variety X turns out to be derived equivalent to X without being isomorphic to X. In
this section we indicate how this works for Abelian varieties (Mukai) and K3 surfaces
(Mukai, Orlov, Bridgeland).

Theorem 2.1. [Br] Let P be a vector bundle on X × Y . Assume that for all y ∈
Y the stalks Py ∈ Db(X) satisfy Hom0(Py,Py) = C, and are pairwise orthogonal:

ExtiX(Py1 ,Py2) = 0 if y1 6= y2. Then the Fourier-Mukai functor FMP : Db(Y )→ Db(X)
is an equivalence. If in addition Py = Py ⊗ ωX for all y ∈ Y , then FMP is a derived
equivalence1.

Note that the conditions of the Theorem are necessary in order for FMP to induce a
derived equivalence Db(Y )→ Db(X). Indeed by definition we have

FMP(Oy) = Py,

and then since Hom(k(y), k(y)) = k and Hom(k(y1), k(y2)), y1 6= y2, the same must
hold true for Py’s. Also, since ωX is up to a shift the Serre functor, and the Serre
functor is unique, k(y)⊗ ωY = k(y) implies Py = Py ⊗ ωX .

Let A be a complex abelian variety. By definition Â = Pic0(A) is the fine moduli
space of A-invariant line bundles on A:

Pic0(A)(k) = {L ∈ Pic(A) : t∗x(L) ∼= L ∀x ∈ A}

We take P to be the normalized Poincare bundle on A× Â.

Corollary 2.2. A and Â are derived equivalent.

Proof. For any y ∈ Â we have HomA(Py,Py) ∼= HomA(OA,OA) = C. On the other
hand if

Hom∗A(Py1 ,Py2) = H∗(A,Py2 ⊗ P∨y1)

is not zero, then one can show that Py2 ⊗P∨y1 is a trivial bundle, so that Py1 ∼= Py2 , thus
y1 = y2. �

Corollary 2.3. Let X be a K3 surface and assume that the there exists a fine compact
two dimensional moduli space Y of stable vector bundles on X. Then Y is derived
equivalent to X and in fact Y is also a K3 surface.

3. KX > 0 or KX < 0

Theorem 3.1. Let X and X ′ be smooth projective varieties and assume that KX > 0
(KX is ample) or KX < 0 (−KX is ample). Suppose that derived categories Db(X) and
Db(X ′) are equivalent. Then X and X ′ are isomorphic.

Remark 3.2. In the proof of Theorem 3.1 one only uses the graded structure of trian-
gulated categories, that is the shift functor.

1And this condition is automatically satisfied when ωX = OX , that is X is a Calabi-Yau variety.
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The hardest step in the proof of Theorem 3.1 is to show that KX′ (resp. −KX′) is
also ample. If we assumed that, the proof would be very easy (see Step 5 in the proof
of Theorem 3.1 below). We will need the following characterization of ampleness.

Proposition 3.3. Let X be a projective variety and L a line bundle on X. The following
conditions are equivalent:

1. L is ample

2. The canonical morphism X → Proj
(
⊕j≥0 Γ(X,L⊗j)

)
is an isomorphism

3. The system of open sets {x ∈ X|sx 6= 0} for s ∈ Γ(X,L⊗j), j ∈ Z forms a basis
of Zarisky topology on X, that is for any closed Z ⊂ X and x /∈ Z there exists a
section s ∈ Γ(X,L⊗j) such that s vanishes on Z and does not vanish at x.

Proof. (1) =⇒ (2) By Hartshorne Exercise 5.13, the graded ring under the Proj does
not change when we replace L by some power of L. Therefore we may assume that L is
very ample, that is there exists a closed embedding i : X → PN such that L ∼= i∗(O(1)).
In this case by Harshorne Exercise 5.14, the homogeneous coordinate ring of X agrees
with the ring ⊕j≥0Γ(X,L⊗j) for large enough degrees.

(2) =⇒ (3) This is by definition of the Zarisky topology on Proj(S): the basis is
formed by open sets D+(f) = X − V (f) for homogeneous elements f ∈ S.

(3) =⇒ (1) Bondal and Orlov refer to Illusie in SGA6.
�

Let C be a graded category endowed with a Serre functor S. We say that an object
P ∈ C is a point object of codimension s if

(i) S(P ) ∼= P [s]
(ii) Hom(P, P [j]) = 0, j < 0
(iii) Hom(P, P ) = C.
We denote the set of point objects in C by P̃(C). It is obvious that for a smooth

projective variety X of dimension n the set P̃(Db(X)) contains the set of objects iso-
morphic to shifts of skyscraper sheaves k(x)[j] for x ∈ X, j ∈ Z (all such point objects
have codimension n).

We say that an object L ∈ C is a line bundle object if for any point object P there
exists a t ∈ Z such that

(i) Hom(L,P [t]) = C
(ii) Hom(L,P [j]) = 0 for j 6= t

We denote the set of invertible objects in C by L̃(C). Note that both L̃(C) and P̃(C)
are closed under shifts.

The first step in proving Theorem 3.1 relies on the following statement:

Proposition 3.4. 1. If X is a smooth projective variety with KX > 0 or KX < 0, then

the set of point objects P̃(Db(X)) coincides with shifts of skyscraper sheaves.

2. If P̃(Db(X)) coincides with shifts of skyscraper sheaves, then the set of invertible

objects L̃(Db(X)) coincides with shifts of line bundles.

Before we prove the Proposition we prove two Lemmas characterizing skyscraper
sheaves and vector bundles.
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Lemma 3.5. If F is a coherent sheaf on a projective variety X, such that

F ⊗ L ∼= F

for some ample line bundle L on X, then F has a zero-dimensional support.

Proof. We can assume that L is very ample: L = i∗O(1) for some embedding i : X → PN .
Let P (n) = χ(F(n)) be the Hilbert polynomial. It is well known that the degree of
P (n) is equal to the dimension of support of F , and since P (n) = χ(F) is constant by
assumption, it follows that dim(supp(F)) = 0. �

Lemma 3.6. If F is a coherent sheaf on a smooth variety X, such that

Ext1X(F , k(x)) = 0

for all x ∈ supp(F), then F is locally free.

Proof. We first reduce the statement to the case X = Spec(A), A is a regular local
k-algebra by using the adjunction for the flat morphism j : Spec(OX,x)→ X:

Ext1X(F , k(x)) = Ext1Spec(OX,x)
(j∗F , k(x))

and then use the following fact form commutative algebra. If A is a regular local ring
and M a finitely generated A-module satisfying the property Ext1(M,k) = 0, then M
is free. �

Proof of the Proposition. (1) We know that any shift of a skyscraper sheaf on any variety
X is a point object. Let us now prove the converse. Let P be a point object in Db(X)
and let Hi be the cohomology sheaves of P . It follows from the first Lemma above that
Hi have zero-dimensional support and that the codimension of P is equal to n.

Consider the spectral sequence

Ep,q2 =
⊕
k−j=q

Extp(Hj ,Hk) =⇒ Hom(P, P [p+ q]).

Let us consider the smallest q0 such that E0,q0
2 is non-zero. Since for any non-vanishing

Hj the vector space Hom(Hj ,Hj) is non-zero, we have E0,0
2 6= 0, hence q0 ≤ 0. In fact for

any p ∈ Z and q < q0 we have Ep,q2 = 0, since non-vanishing of some Extp(Hj ,Hk) implies
that Hj and Hk have a common point in their supports and hence Hom(Hj ,Hk) 6= 0.

Since the term E0,q0
2 is in the corner of the sheet E2, that is all terms to the left and

below vanish, we have

E0,q0
2
∼= E0,q0

∞
∼= Hom(P, P [q0]),

and q0 ≥ 0 by definition of the point object. We have therefore that q0 = 0 and⊕
j

Hom(Hj ,Hj) ∼= E0,0
∞
∼= Hom(P, P [0]) = C,

and all of the Hj ’s but one, vanish and P [j0] = Hj0 is a skyscraper sheaf.
(2) Let L be an line bundle object in Db(X) and Hi be its cohomology sheaves.

Consider the spectral sequence

Ep,q2 = Hom(H−q, k(x)[p+ q]) =⇒ Hom(L, k(x)[p+ q]).
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Let q0 be the maximal q such that Hq is non-zero. Then E0,−q0
2 sits is the last row of

E2 term and therefore

E0,q0
2
∼= E0,q0

∞
∼= Hom(L, k(x)[−q0])

E1,q0
2
∼= E1,q0

∞
∼= Hom(L, k(x)[1− q0]).

We have
Hom(L, k(x)[−q0]) = Hom(Hq0 , k(x)) 6= 0

for any x in the support of Hq0 , and therefore by definition of the invertible object,
E1,q0

2 = Ext1(Hq0 , k(x)) = 0. From the second Lemma above we deduce that in fact Hq0
is a locally free sheaf, in particular all Ep,q02 = Extp(Hq0 , k(x)) = 0 except for p = 0.
The rank of Hq0 is equal to dimHom(Hq0 , k(x)) = 1, that is Hq0 is a line bundle.

Repeating the above argument with q < q0 we get Hq = 0, hence L ∼= Hq0 [−q0] is
isomorphic to a shift of a line bundle.

�

Proof of Theorem 3.1. Assume e.g. that KX > 0.
The proof goes in 4 steps:

(1) Identify X(k) with X ′(k) and Pic(X) with Pic(X ′) (as sets)
(2) Identify Zariski topologies on X(k) and on X ′(k)
(3) Prove that KX′ > 0
(4) Prove that X ∼= X ′

(1) Let P(X) and L(X) denote the set of objects of Db(X) isomorphic to skyscraper
sheaves and line bundles respectively, and similarly for X ′.

By Proposition above we have

P̃(X) = P̃(Db(X)) = P̃(Db(X ′)) ⊃ P̃(X ′).

In fact the last inclusion is also an equality. Indeed, any two objects in P̃(X) are either

orthogonal, or differ by a shift. Therefore any object P ∈ P̃(Db(X ′)) which is not in

P̃(X ′) would be orthogonal to all skyscraper sheaves on X ′, hence it will be zero.
Now it follows from the second claim of the Proposition above that

L̃(X) = L̃(Db(X)) = L̃(Db(X ′)) = L̃(X ′).

Fix a line bundle L0 on X. It corresponds to a shift L′0[t] of a line bundle L′0 on X ′.
Adjusting the equivalence of derived categories we may assume that t = 0.

Now we have
P(X) = {P ∈ P̃(X) : Hom(L0, P ) 6= 0}

and similarly for X ′, hence P(X) = P(X ′). Furthermore we have

L(X) = {L ∈ L̃(X) : Hom(L,P ) 6= 0, P ∈ P(X)}
and similarly for X ′, hence L(X) = L(X ′).

Finally:

X(k) =
P(X)

'
=
P(X ′)

'
= X ′(k)

Pic(X) =
L(X)

'
=
L(X ′)

'
= Pic(X ′).
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(2) We can recover the Zariski topology on the sets X(k), X(k) as follows. Let
Uα = {P ∈ P(X) : αP 6= 0}, for α ∈ Hom(L1, L2), L1, L2 ∈ L(X) where αP is the
induced morphism in Hom(L2, P )→ Hom(L1, P ) and similarly for X ′(k).

Each Uα is open in X(k). Moreover since any projective has an ample line bundle
(1) =⇒ (3) of Lemma 3.3 implies that there are enough of Uα to form a basis of the
Zariski topology.

(3) Since KX > 0 it follows from (1) =⇒ (3) of Lemma 3.3 that there even a smaller
basis on X(k), then the one given in (2): we restrict to α ∈ Hom(L0, Li) = Γ(ω⊗iX ),

where Li = Si(L0)[−ni] = L0 ⊗ ω⊗iX . Thus, Zariski topology on X ′ admits the base of

the same form Uα, α ∈ Hom(L′0, L
′
i) = Γ(ω⊗iX′) and by (3) =⇒ (1) of Lemma 3.3 we

have K ′X > 0.
(4) We can recover the pluricanonical rings of X and X ′:

RiX := Hom(L0, Li) = Hom(L0, L0 ⊗ ω⊗iX ) = Γ(X,ω⊗iX ).

hence RX = ⊕RjX is the pluricanonical ring of X and X ∼= ProjAX by (1) =⇒ (2) of
Lemma 3.3.

Finally we have
X ∼= ProjRX ∼= ProjRX′ ∼= X ′.

�
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