DERIVED CATEGORIES: LECTURE 4

EVGENY SHINDER

References

- [Muk] Shigeru Mukai, Fourier functor and its application to the moduli of bundles on an abelian variety, Algebraic geometry, Sendai, 1985, 515–550, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987.
- [Br] Tom Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc. 31 (1999), no. 1, 25–34.
- [BO1] Alexey Bondal, Dmitri Orlov, Semiorthogonal decomposition for algebraic varieties arXiv:alg-geom/9506012
- [BO2] Alexey Bondal, Dmitri Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), no. 3, 327–344.

1. Overview

One of the approaches to non-commutative geometry is to consider the category of sheaves Shv(X) on a given geometric object X as a primary object of study.

That is, by definition a generalized space would be a category \mathcal{C} with some properties. We think of \mathcal{C} as the category of sheaves on a space. It is then natural to ask which properties of the original geometric object X can be extracted from the category Shv(X), and ultimately, whether X itself can be reconstructed.

Precise answer to this question depends on the model we choose. Here are some examples.

- 1. Rosenberg's spectrum of an abelian category. If \mathcal{A} is an abelian category, one can attach to it a locally ringed space $Spec(\mathcal{A})$ in such a way that if $\mathcal{A}_X = QCoh(X)$ on a scheme X, then $Spec(\mathcal{A}_X) \cong X$. Thus by passing to the abelian category of sheaves we do not lose information.
- 2. Balmer's tensor triangulated geometry. If \mathcal{K} is a tensor triangulated category, then one can associate to it a locally ringed space $Spec(\mathcal{K})$ which also recovers the scheme if \mathcal{K} is the category of sheaves. Roughly speaking, points of $Spec(\mathcal{K})$ are \otimes -ideals in \mathcal{K} .

In particular in both cases above if the corresponding categories of sheaves on X and Y are equivalent, then X and Y are isomorphic.

This is not the case for $D^b(X)$ (considered as usual as a triangulated category). Indeed there are examples of K3 surfaces and abelian varieties for which derived equivalence does not imply isomorphism.

On the other hand if $K_X > 0$ or $K_X < 0$, then Bondal and Orlov proved that it is possible to reconstruct X from $D^b(X)$.

2. Abelian varieties and K3 surfaces

Sometimes a moduli space Y of sheaves or bundles with prescribed properties on a variety X turns out to be derived equivalent to X without being isomorphic to X. In this section we indicate how this works for Abelian varieties (Mukai) and K3 surfaces (Mukai, Orlov, Bridgeland).

Theorem 2.1. [Br] Let \mathcal{P} be a vector bundle on $X \times Y$. Assume that for all $y \in Y$ the stalks $\mathcal{P}_y \in D^b(X)$ satisfy $Hom^0(\mathcal{P}_y, \mathcal{P}_y) = \mathbb{C}$, and are pairwise orthogonal: $Ext_X^i(\mathcal{P}_{y_1}, \mathcal{P}_{y_2}) = 0$ if $y_1 \neq y_2$. Then the Fourier-Mukai functor $FM_{\mathcal{P}}: D^b(Y) \to D^b(X)$ is an equivalence. If in addition $\mathcal{P}_y = \mathcal{P}_y \otimes \omega_X$ for all $y \in Y$, then $FM_{\mathcal{P}}$ is a derived equivalence¹.

Note that the conditions of the Theorem are necessary in order for $FM_{\mathcal{P}}$ to induce a derived equivalence $D^b(Y) \to D^b(X)$. Indeed by definition we have

$$FM_{\mathcal{P}}(\mathcal{O}_y) = \mathcal{P}_y,$$

and then since Hom(k(y), k(y)) = k and $Hom(k(y_1), k(y_2)), y_1 \neq y_2$, the same must hold true for \mathcal{P}_y 's. Also, since ω_X is up to a shift the Serre functor, and the Serre functor is unique, $k(y) \otimes \omega_Y = k(y)$ implies $\mathcal{P}_y = \mathcal{P}_y \otimes \omega_X$.

Let A be a complex abelian variety. By definition $\widehat{A} = Pic^0(A)$ is the fine moduli space of A-invariant line bundles on A:

$$Pic^{0}(A)(k) = \{L \in Pic(A) : t_{x}^{*}(L) \cong L \ \forall x \in A\}$$

We take \mathcal{P} to be the normalized Poincare bundle on $A \times \widehat{A}$.

Corollary 2.2. A and \widehat{A} are derived equivalent.

Proof. For any $y \in \widehat{A}$ we have $Hom_A(\mathcal{P}_y, \mathcal{P}_y) \cong Hom_A(\mathcal{O}_A, \mathcal{O}_A) = \mathbb{C}$. On the other hand if

$$Hom_A^*(\mathcal{P}_{y_1}, \mathcal{P}_{y_2}) = H^*(A, \mathcal{P}_{y_2} \otimes \mathcal{P}_{y_1}^{\vee})$$

is not zero, then one can show that $\mathcal{P}_{y_2} \otimes \mathcal{P}_{y_1}^{\vee}$ is a trivial bundle, so that $\mathcal{P}_{y_1} \cong \mathcal{P}_{y_2}$, thus $y_1 = y_2$.

Corollary 2.3. Let X be a K3 surface and assume that the there exists a fine compact two dimensional moduli space Y of stable vector bundles on X. Then Y is derived equivalent to X and in fact Y is also a K3 surface.

3.
$$K_X > 0$$
 or $K_X < 0$

Theorem 3.1. Let X and X' be smooth projective varieties and assume that $K_X > 0$ $(K_X \text{ is ample})$ or $K_X < 0$ $(-K_X \text{ is ample})$. Suppose that derived categories $D^b(X)$ and $D^b(X')$ are equivalent. Then X and X' are isomorphic.

Remark 3.2. In the proof of Theorem 3.1 one only uses the graded structure of triangulated categories, that is the shift functor.

¹And this condition is automatically satisfied when $\omega_X = \mathcal{O}_X$, that is X is a Calabi-Yau variety.

The hardest step in the proof of Theorem 3.1 is to show that $K_{X'}$ (resp. $-K_{X'}$) is also ample. If we assumed that, the proof would be very easy (see Step 5 in the proof of Theorem 3.1 below). We will need the following characterization of ampleness.

Proposition 3.3. Let X be a projective variety and L a line bundle on X. The following conditions are equivalent:

- 1. L is ample
- 2. The canonical morphism $X \to Proj\left(\bigoplus_{j\geq 0} \Gamma(X, L^{\otimes j})\right)$ is an isomorphism
- 3. The system of open sets $\{x \in X | s_x \neq 0\}$ for $s \in \Gamma(X, L^{\otimes j})$, $j \in \mathbb{Z}$ forms a basis of Zarisky topology on X, that is for any closed $Z \subset X$ and $x \notin Z$ there exists a section $s \in \Gamma(X, L^{\otimes j})$ such that s vanishes on Z and does not vanish at x.
- *Proof.* (1) \Longrightarrow (2) By Hartshorne Exercise 5.13, the graded ring under the Proj does not change when we replace L by some power of L. Therefore we may assume that L is very ample, that is there exists a closed embedding $i: X \to \mathbb{P}^N$ such that $L \cong i^*(\mathcal{O}(1))$. In this case by Harshorne Exercise 5.14, the homogeneous coordinate ring of X agrees with the ring $\bigoplus_{i>0} \Gamma(X, L^{\otimes j})$ for large enough degrees.
- (2) \Longrightarrow (3) This is by definition of the Zarisky topology on Proj(S): the basis is formed by open sets $D_+(f) = X V(f)$ for homogeneous elements $f \in S$.
 - $(3) \implies (1)$ Bondal and Orlov refer to Illusie in SGA6.

Let \mathcal{C} be a graded category endowed with a Serre functor S. We say that an object $P \in \mathcal{C}$ is a point object of codimension s if

- (i) $S(P) \cong P[s]$
- (ii) Hom(P, P[j]) = 0, j < 0
- (iii) $Hom(P, P) = \mathbb{C}$.

We denote the set of point objects in \mathcal{C} by $\widetilde{\mathcal{P}}(\mathcal{C})$. It is obvious that for a smooth projective variety X of dimension n the set $\widetilde{\mathcal{P}}(D^b(X))$ contains the set of objects isomorphic to shifts of skyscraper sheaves k(x)[j] for $x \in X$, $j \in \mathbb{Z}$ (all such point objects have codimension n).

We say that an object $L \in \mathcal{C}$ is a line bundle object if for any point object P there exists a $t \in \mathbb{Z}$ such that

- (i) $Hom(L, P[t]) = \mathbb{C}$
- (ii) Hom(L, P[j]) = 0 for $j \neq t$

We denote the set of invertible objects in \mathcal{C} by $\widetilde{\mathcal{L}}(\mathcal{C})$. Note that both $\widetilde{\mathcal{L}}(\mathcal{C})$ and $\widetilde{\mathcal{P}}(\mathcal{C})$ are closed under shifts.

The first step in proving Theorem 3.1 relies on the following statement:

Proposition 3.4. 1. If X is a smooth projective variety with $K_X > 0$ or $K_X < 0$, then the set of point objects $\widetilde{\mathcal{P}}(D^b(X))$ coincides with shifts of skyscraper sheaves.

2. If $\widetilde{\mathcal{P}}(D^b(X))$ coincides with shifts of skyscraper sheaves, then the set of invertible objects $\widetilde{\mathcal{L}}(D^b(X))$ coincides with shifts of line bundles.

Before we prove the Proposition we prove two Lemmas characterizing skyscraper sheaves and vector bundles.

Lemma 3.5. If \mathcal{F} is a coherent sheaf on a projective variety X, such that

$$\mathcal{F} \otimes L \cong \mathcal{F}$$

for some ample line bundle L on X, then \mathcal{F} has a zero-dimensional support.

Proof. We can assume that L is very ample: $L = i^*\mathcal{O}(1)$ for some embedding $i: X \to \mathbb{P}^N$. Let $P(n) = \chi(\mathcal{F}(n))$ be the Hilbert polynomial. It is well known that the degree of P(n) is equal to the dimension of support of \mathcal{F} , and since $P(n) = \chi(\mathcal{F})$ is constant by assumption, it follows that $dim(supp(\mathcal{F})) = 0$.

Lemma 3.6. If \mathcal{F} is a coherent sheaf on a smooth variety X, such that

$$Ext_X^1(\mathcal{F}, k(x)) = 0$$

for all $x \in supp(\mathcal{F})$, then \mathcal{F} is locally free.

Proof. We first reduce the statement to the case X = Spec(A), A is a regular local k-algebra by using the adjunction for the flat morphism $j: Spec(\mathcal{O}_{X,x}) \to X$:

$$Ext_X^1(\mathcal{F}, k(x)) = Ext_{Spec(\mathcal{O}_{Y, \pi})}^1(j^*\mathcal{F}, k(x))$$

and then use the following fact form commutative algebra. If A is a regular local ring and M a finitely generated A-module satisfying the property $Ext^1(M,k) = 0$, then M is free.

Proof of the Proposition. (1) We know that any shift of a skyscraper sheaf on any variety X is a point object. Let us now prove the converse. Let P be a point object in $D^b(X)$ and let \mathcal{H}^i be the cohomology sheaves of P. It follows from the first Lemma above that \mathcal{H}^i have zero-dimensional support and that the codimension of P is equal to n.

Consider the spectral sequence

$$E_2^{p,q} = \bigoplus_{k-j=q} Ext^p(\mathcal{H}^j, \mathcal{H}^k) \implies Hom(P, P[p+q]).$$

Let us consider the smallest q_0 such that E_2^{0,q_0} is non-zero. Since for any non-vanishing \mathcal{H}^j the vector space $Hom(\mathcal{H}^j,\mathcal{H}^j)$ is non-zero, we have $E_2^{0,0}\neq 0$, hence $q_0\leq 0$. In fact for any $p\in\mathbb{Z}$ and $q< q_0$ we have $E_2^{p,q}=0$, since non-vanishing of some $Ext^p(\mathcal{H}^j,\mathcal{H}^k)$ implies that \mathcal{H}^j and \mathcal{H}^k have a common point in their supports and hence $Hom(\mathcal{H}^j,\mathcal{H}^k)\neq 0$.

Since the term E_2^{0,q_0} is in the corner of the sheet E_2 , that is all terms to the left and below vanish, we have

$$E_2^{0,q_0} \cong E_{\infty}^{0,q_0} \cong Hom(P, P[q_0]),$$

and $q_0 \ge 0$ by definition of the point object. We have therefore that $q_0 = 0$ and

$$\bigoplus_{j} Hom(\mathcal{H}^{j}, \mathcal{H}^{j}) \cong E_{\infty}^{0,0} \cong Hom(P, P[0]) = \mathbb{C},$$

and all of the \mathcal{H}^{j} 's but one, vanish and $P[j_0] = \mathcal{H}^{j_0}$ is a skyscraper sheaf.

(2) Let L be an line bundle object in $D^b(X)$ and \mathcal{H}^i be its cohomology sheaves. Consider the spectral sequence

$$E_2^{p,q} = Hom(\mathcal{H}^{-q}, k(x)[p+q]) \implies Hom(L, k(x)[p+q]).$$

Let q_0 be the maximal q such that \mathcal{H}^q is non-zero. Then $E_2^{0,-q_0}$ sits is the last row of E_2 term and therefore

$$E_2^{0,q_0} \cong E_{\infty}^{0,q_0} \cong Hom(L, k(x)[-q_0])$$

 $E_2^{1,q_0} \cong E_{\infty}^{1,q_0} \cong Hom(L, k(x)[1-q_0]).$

We have

$$Hom(L, k(x)[-q_0]) = Hom(\mathcal{H}^{q_0}, k(x)) \neq 0$$

for any x in the support of \mathcal{H}^{q_0} , and therefore by definition of the invertible object, $E_2^{1,q_0} = Ext^1(\mathcal{H}^{q_0}, k(x)) = 0$. From the second Lemma above we deduce that in fact \mathcal{H}^{q_0} is a locally free sheaf, in particular all $E_2^{p,q_0} = Ext^p(\mathcal{H}^{q_0}, k(x)) = 0$ except for p = 0. The rank of \mathcal{H}^{q_0} is equal to dim $Hom(\mathcal{H}^{q_0}, k(x)) = 1$, that is \mathcal{H}^{q_0} is a line bundle.

Repeating the above argument with $q < q_0$ we get $\mathcal{H}^q = 0$, hence $L \cong \mathcal{H}^{q_0}[-q_0]$ is isomorphic to a shift of a line bundle.

Proof of Theorem 3.1. Assume e.g. that $K_X > 0$.

The proof goes in 4 steps:

- (1) Identify X(k) with X'(k) and Pic(X) with Pic(X') (as sets)
- (2) Identify Zariski topologies on X(k) and on X'(k)
- (3) Prove that $K_{X'} > 0$
- (4) Prove that $X \cong X'$
- (1) Let $\mathcal{P}(X)$ and $\mathcal{L}(X)$ denote the set of objects of $D^b(X)$ isomorphic to skyscraper sheaves and line bundles respectively, and similarly for X'.

By Proposition above we have

$$\widetilde{\mathcal{P}}(X) = \widetilde{\mathcal{P}}(D^b(X)) = \widetilde{\mathcal{P}}(D^b(X')) \supset \widetilde{\mathcal{P}}(X').$$

In fact the last inclusion is also an equality. Indeed, any two objects in $\widetilde{\mathcal{P}}(X)$ are either orthogonal, or differ by a shift. Therefore any object $P \in \widetilde{\mathcal{P}}(D^b(X'))$ which is not in $\widetilde{\mathcal{P}}(X')$ would be orthogonal to all skyscraper sheaves on X', hence it will be zero.

Now it follows from the second claim of the Proposition above that

$$\widetilde{\mathcal{L}}(X) = \widetilde{\mathcal{L}}(D^b(X)) = \widetilde{\mathcal{L}}(D^b(X')) = \widetilde{\mathcal{L}}(X').$$

Fix a line bundle L_0 on X. It corresponds to a shift $L'_0[t]$ of a line bundle L'_0 on X'. Adjusting the equivalence of derived categories we may assume that t = 0.

Now we have

$$\mathcal{P}(X) = \{ P \in \widetilde{\mathcal{P}}(X) : Hom(L_0, P) \neq 0 \}$$

and similarly for X', hence $\mathcal{P}(X) = \mathcal{P}(X')$. Furthermore we have

$$\mathcal{L}(X) = \{ L \in \widetilde{\mathcal{L}}(X) : Hom(L, P) \neq 0, P \in \mathcal{P}(X) \}$$

and similarly for X', hence $\mathcal{L}(X) = \mathcal{L}(X')$.

Finally:

$$X(k) = \frac{\mathcal{P}(X)}{\cong} = \frac{\mathcal{P}(X')}{\cong} = X'(k)$$

$$Pic(X) = \frac{\mathcal{L}(X)}{\cong} = \frac{\mathcal{L}(X')}{\cong} = Pic(X').$$

(2) We can recover the Zariski topology on the sets X(k), X(k) as follows. Let $U_{\alpha} = \{P \in \mathcal{P}(X) : \alpha_P \neq 0\}$, for $\alpha \in Hom(L_1, L_2)$, $L_1, L_2 \in \mathcal{L}(X)$ where α_P is the induced morphism in $Hom(L_2, P) \to Hom(L_1, P)$ and similarly for X'(k).

Each U_{α} is open in X(k). Moreover since any projective has an ample line bundle (1) \Longrightarrow (3) of Lemma 3.3 implies that there are enough of U_{α} to form a basis of the Zariski topology.

- (3) Since $K_X > 0$ it follows from (1) \Longrightarrow (3) of Lemma 3.3 that there even a smaller basis on X(k), then the one given in (2): we restrict to $\alpha \in Hom(L_0, L_i) = \Gamma(\omega_X^{\otimes i})$, where $L_i = S^i(L_0)[-ni] = L_0 \otimes \omega_X^{\otimes i}$. Thus, Zariski topology on X' admits the base of the same form U_α , $\alpha \in Hom(L'_0, L'_i) = \Gamma(\omega_{X'}^{\otimes i})$ and by (3) \Longrightarrow (1) of Lemma 3.3 we have $K'_X > 0$.
 - (4) We can recover the pluricanonical rings of X and X':

$$R_X^i := Hom(L_0, L_i) = Hom(L_0, L_0 \otimes \omega_X^{\otimes i}) = \Gamma(X, \omega_X^{\otimes i}).$$

hence $R_X = \bigoplus R_X^j$ is the pluricanonical ring of X and $X \cong ProjA_X$ by (1) \Longrightarrow (2) of Lemma 3.3.

Finally we have

$$X \cong ProjR_X \cong ProjR_{X'} \cong X'$$
.